Jump to content

STS-66

From Wikipedia, the free encyclopedia

STS-66
ATLAS-3 in the payload bay of Atlantis, while the Shuttle's Canadarm grapples CRISTA-SPAS
NamesSpace Transportation System-66
Mission typeResearch
OperatorNASA
COSPAR ID1994-073A Edit this at Wikidata
SATCAT no.23340
Mission duration10 days, 22 hours, 34 minutes, 2 seconds
Distance travelled7,330,226 kilometers (4,554,791 mi)
Orbits completed174
Spacecraft properties
SpacecraftSpace Shuttle Atlantis
Payload mass10,544 kilograms (23,246 lb)
Crew
Crew size6
Members
Start of mission
Launch dateNovember 3, 1994, 16:59:43.060 (1994-11-03UTC16:59:43Z) UTC
Launch siteKennedy, LC-39B
End of mission
Landing dateNovember 14, 1994, 15:33:45 (1994-11-14UTC15:33:46Z) UTC
Landing siteEdwards, Runway 22
Orbital parameters
Reference systemGeocentric
RegimeLow Earth
Perigee altitude296 kilometres (184 mi)
Apogee altitude310 kilometres (190 mi)
Inclination57.0 degrees
Period90.6 minutes

STS-66 mission patch

Left to right: Clervoy, Parazynski, Brown, Tanner, McMonagle, Ochoa
← STS-68 (65)
STS-63 (67) →

STS-66 was a Space Shuttle program mission that was flown by the Space Shuttle Atlantis. STS-66 launched on November 3, 1994, at 11:59:43.060 am EDT from Launch Pad 39-B at NASA's Kennedy Space Center. Atlantis landed at Edwards Air Force Base on November 14, 1994, at 10:33:45 am EST.

Crew

[edit]
Position Astronaut
Commander United States Donald R. McMonagle
Third and last spaceflight
Pilot United States Curtis L. Brown, Jr.
Second spaceflight
Mission Specialist 1 United States Ellen Ochoa
Second spaceflight
Mission Specialist 2
Flight Engineer
United States Joseph R. Tanner
First spaceflight
Mission Specialist 3 France Jean-François Clervoy, CNES
First spaceflight
Mission Specialist 4 United States Scott E. Parazynski
First spaceflight

Crew seat assignments

[edit]
Seat[1] Launch Landing
Seats 1–4 are on the flight deck.
Seats 5–7 are on the mid-deck.
1 McMonagle
2 Brown
3 Ochoa Clervoy
4 Tanner
5 Clervoy Ochoa
6 Parazynski
7 Unused


Mission highlights

[edit]
Launch of Space Shuttle Atlantis and the beginning of STS-66 mission.

The Atmospheric Laboratory for Applications and Sciences – 3 (ATLAS-03) was the primary payload aboard STS-66. It continued the series of Spacelab flights to study the energy of the sun and how it affects the Earth's climate and environment. The ATLAS-03 mission made the first detailed measurements from the Shuttle of the Northern Hemisphere's middle atmosphere in late fall. The timing of the flight, when the Antarctic ozone hole was diminishing, allowed scientists to study possible effects of the ozone hole on mid-latitudes, the way Antarctic air recovers, and how the northern atmosphere changes as the winter season approaches.

In addition to the ATLAS-03 investigations, the mission included deployment and retrieval of the Cryogenic Infrared Spectrometer Telescope for Atmosphere, or CRISTA. Mounted on the Shuttle Pallet Satellite, the payload is designed to explore the variability of the atmosphere and provide measurements that will complement those obtained by the Upper Atmosphere Research Satellite launched aboard Discovery in 1991. CRISTA-SPAS is a joint U.S./German experiment.

Other payloads in Atlantis's cargo bay included the Shuttle Solar Backscatter Ultraviolet (SSBUV-7) payload and the Experiment on the Sun Complementing ATLAS (ESCAPE-II). Payloads located in the middeck include the Physiological & Anatomical Rodent Experiment (PARE/NIR-R), Protein Crystal Growth-Thermal Enclosure (PCG-TES), Protein Crystal Growth- Single Locker (PCG-STES), Space Tissue Loss/National Institute of Health (STL/NIH-C), Space Acceleration Measurement System (SAMS) and the Heat Pipe Performance-2 Experiment (HPP-2).

Astronaut Ellen Ochoa at RMS controls on aft flight deck of the Space Shuttle Atlantis

STS-66 further advanced comprehensive effort to collect data about sun's energy output, chemical makeup of the Earth's middle atmosphere, and how these factors affect global ozone levels. Seven instruments on the Atmospheric Laboratory for Applications and Science-3 (ATLAS-3) also flew on first two ATLAS flights. No other collection of space-based instruments provides the same extensive range of atmospheric measurements. Also considered a primary payload was the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS), continuing joint NASA-German Space Agency (DARA, now the DLR) series of scientific missions. ATLAS-3 and CRISTA-SPAS considered as joint mission with single set of science objectives. During the mission the crew divided into two teams for around-the-clock research.

ATLAS-3 instruments, mounted on a Spacelab pallet in the cargo bay, included Atmospheric Trace Molecule Spectroscopy (ATMOS), which collected more data on trace gases in the atmosphere than on all three of its previous flights combined; Shuttle Solar Backscatter Ultraviolet Spectrometer (SSBUV), which took ozone measurements to calibrate ozone monitor on aging NOAA-9 satellite as well as cooperative measurements with other ATLAS-3 instruments; Active Cavity Radiometer Irradiance Monitor (ACRIM), which took extremely precise measurements of the sun's total radiation for 30 orbits as calibration reference for sister instrument on Upper Atmosphere Research Satellite (UARS) launched in 1991; Measurement of the Solar Constant (SOLCON), provided by Belgium, which also measured solar radiation but as reference point to track changes over years; Solar Spectrum Measurement (SOLSPEC), French instrument, measured the Sun's radiation as function of wavelength; and Solar Ultraviolet Spectral Irradiance Monitor (SUSIM), which collected its highest precision solar ultraviolet radiation measurements in its 15-year lifetime. Millimeter Wave Atmospheric Sounder (MAS), collected nine hours of observations, measuring distribution of water vapor, chlorine monoxide and ozone at altitudes between 12 and 60 miles (20 to 100 kilometres (62 mi)), before computer malfunction halted instrument operations.

Atlantis lands to conclude the STS-66 mission

CRISTA-SPAS released from orbiter's Remote Manipulator System arm on second day of mission. Flying at distance of about 25 to 44 miles (40 to 70 kilometres (43 mi)) behind the Shuttle, payload collected data for more than eight days before being retrieved and returned to the cargo bay. The CRISTA instrument gathered first global information about medium and small scale disturbances in trace gases in middle atmosphere, which could lead to better models of the atmosphere and Earth's energy balance. The second CRISTA-SPAS instrument, the Middle Atmosphere High Resolution Spectrograph Investigation (MAHRSI) measured amounts of ozone-destroying hydroxyl and nitric oxide in the middle atmosphere and lower thermosphere from 24 to 72 miles (40 to 120 kilometres (75 mi)). MAHRSI yielded first complete global maps of hydroxyl in atmosphere.

For retrieval of CRISTA-SPAS, a different approach method to the spacecraft was successfully tested as a prelude to the upcoming U.S. Shuttle/Russian Space Station Mir docking flights. Called R-Bar approach, it is expected to save propellant while reducing risk of contamination to Mir systems from orbiter thruster jet firings. STS-66 was the last solo shuttle flight for Atlantis for over 14 years, as her upcoming missions were dedicated to Mir, and ISS flights. Atlantis would not fly solo again until STS-125 (The final Hubble Space Telescope Mission).

See also

[edit]

References

[edit]
  1. ^ "STS-66". Spacefacts. Retrieved July 29, 2024.
[edit]

Public Domain This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.